p-group, metabelian, nilpotent (class 2), monomial
Aliases: C42.299C23, C4.1722+ (1+4), C8⋊6D4⋊42C2, C8⋊9D4⋊43C2, C4⋊C8⋊53C22, (C4×C8)⋊62C22, C22≀C2.7C4, C4⋊D4.26C4, C24.89(C2×C4), C8⋊C4⋊33C22, C22⋊Q8.26C4, C22⋊C8⋊47C22, (C2×C4).675C24, (C2×C8).436C23, (C22×C8)⋊57C22, (C4×D4).63C22, C24.4C4⋊38C2, C23.42(C22×C4), C2.30(Q8○M4(2)), (C2×M4(2))⋊49C22, C22.199(C23×C4), (C22×C4).942C23, (C23×C4).534C22, C22.D4.10C4, C22.19C24.14C2, C42⋊C2.87C22, C42.7C22⋊28C2, C2.49(C22.11C24), C4⋊C4.119(C2×C4), (C2×D4).143(C2×C4), C22⋊C4.20(C2×C4), (C2×C4).81(C22×C4), (C2×Q8).124(C2×C4), (C22×C8)⋊C2⋊34C2, (C22×C4).355(C2×C4), (C2×C4○D4).95C22, SmallGroup(128,1710)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
Subgroups: 348 in 201 conjugacy classes, 124 normal (16 characteristic)
C1, C2, C2 [×2], C2 [×5], C4 [×2], C4 [×9], C22, C22 [×19], C8 [×8], C2×C4 [×2], C2×C4 [×8], C2×C4 [×13], D4 [×7], Q8, C23, C23 [×4], C23 [×3], C42 [×2], C22⋊C4 [×10], C4⋊C4 [×6], C2×C8 [×8], C2×C8 [×2], M4(2) [×6], C22×C4 [×2], C22×C4 [×6], C22×C4 [×2], C2×D4, C2×D4 [×6], C2×Q8, C4○D4 [×2], C24, C4×C8 [×2], C8⋊C4 [×2], C22⋊C8 [×12], C4⋊C8 [×4], C42⋊C2, C4×D4 [×4], C22≀C2 [×2], C4⋊D4 [×2], C22⋊Q8 [×2], C22.D4 [×2], C22×C8 [×2], C2×M4(2) [×6], C23×C4, C2×C4○D4, C24.4C4 [×2], (C22×C8)⋊C2 [×2], C42.7C22 [×2], C8⋊9D4 [×4], C8⋊6D4 [×4], C22.19C24, C42.299C23
Quotients:
C1, C2 [×15], C4 [×8], C22 [×35], C2×C4 [×28], C23 [×15], C22×C4 [×14], C24, C23×C4, 2+ (1+4) [×2], C22.11C24, Q8○M4(2) [×2], C42.299C23
Generators and relations
G = < a,b,c,d,e | a4=b4=d2=e2=1, c2=b, ab=ba, cac-1=dad=a-1, eae=ab2, bc=cb, bd=db, be=eb, dcd=ece=a2b2c, ede=b2d >
(1 23 27 10)(2 11 28 24)(3 17 29 12)(4 13 30 18)(5 19 31 14)(6 15 32 20)(7 21 25 16)(8 9 26 22)
(1 3 5 7)(2 4 6 8)(9 11 13 15)(10 12 14 16)(17 19 21 23)(18 20 22 24)(25 27 29 31)(26 28 30 32)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 10)(2 20)(3 12)(4 22)(5 14)(6 24)(7 16)(8 18)(9 30)(11 32)(13 26)(15 28)(17 29)(19 31)(21 25)(23 27)
(1 5)(2 28)(3 7)(4 30)(6 32)(8 26)(9 18)(11 20)(13 22)(15 24)(25 29)(27 31)
G:=sub<Sym(32)| (1,23,27,10)(2,11,28,24)(3,17,29,12)(4,13,30,18)(5,19,31,14)(6,15,32,20)(7,21,25,16)(8,9,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,20)(3,12)(4,22)(5,14)(6,24)(7,16)(8,18)(9,30)(11,32)(13,26)(15,28)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,18)(11,20)(13,22)(15,24)(25,29)(27,31)>;
G:=Group( (1,23,27,10)(2,11,28,24)(3,17,29,12)(4,13,30,18)(5,19,31,14)(6,15,32,20)(7,21,25,16)(8,9,26,22), (1,3,5,7)(2,4,6,8)(9,11,13,15)(10,12,14,16)(17,19,21,23)(18,20,22,24)(25,27,29,31)(26,28,30,32), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,10)(2,20)(3,12)(4,22)(5,14)(6,24)(7,16)(8,18)(9,30)(11,32)(13,26)(15,28)(17,29)(19,31)(21,25)(23,27), (1,5)(2,28)(3,7)(4,30)(6,32)(8,26)(9,18)(11,20)(13,22)(15,24)(25,29)(27,31) );
G=PermutationGroup([(1,23,27,10),(2,11,28,24),(3,17,29,12),(4,13,30,18),(5,19,31,14),(6,15,32,20),(7,21,25,16),(8,9,26,22)], [(1,3,5,7),(2,4,6,8),(9,11,13,15),(10,12,14,16),(17,19,21,23),(18,20,22,24),(25,27,29,31),(26,28,30,32)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,10),(2,20),(3,12),(4,22),(5,14),(6,24),(7,16),(8,18),(9,30),(11,32),(13,26),(15,28),(17,29),(19,31),(21,25),(23,27)], [(1,5),(2,28),(3,7),(4,30),(6,32),(8,26),(9,18),(11,20),(13,22),(15,24),(25,29),(27,31)])
Matrix representation ►G ⊆ GL8(𝔽17)
1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 16 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 13 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 13 |
1 | 0 | 15 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 0 | 0 | 0 | 0 |
7 | 0 | 16 | 0 | 0 | 0 | 0 | 0 |
7 | 4 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 13 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 13 | 0 | 0 |
1 | 15 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 16 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 16 | 0 | 16 | 0 | 0 | 0 | 0 |
1 | 16 | 16 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
16 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
G:=sub<GL(8,GF(17))| [1,0,0,0,0,0,0,0,15,16,16,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13],[1,0,7,7,0,0,0,0,0,0,0,4,0,0,0,0,15,16,16,16,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[1,0,1,1,0,0,0,0,15,16,16,16,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0],[16,16,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1] >;
38 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2H | 4A | 4B | 4C | 4D | 4E | ··· | 4M | 8A | ··· | 8P |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 8 | ··· | 8 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 4 | ··· | 4 |
38 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | + | + | + | |||||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | C4 | C4 | C4 | 2+ (1+4) | Q8○M4(2) |
kernel | C42.299C23 | C24.4C4 | (C22×C8)⋊C2 | C42.7C22 | C8⋊9D4 | C8⋊6D4 | C22.19C24 | C22≀C2 | C4⋊D4 | C22⋊Q8 | C22.D4 | C4 | C2 |
# reps | 1 | 2 | 2 | 2 | 4 | 4 | 1 | 4 | 4 | 4 | 4 | 2 | 4 |
In GAP, Magma, Sage, TeX
C_4^2._{299}C_2^3
% in TeX
G:=Group("C4^2.299C2^3");
// GroupNames label
G:=SmallGroup(128,1710);
// by ID
G=gap.SmallGroup(128,1710);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,224,253,1430,891,675,1018,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=d^2=e^2=1,c^2=b,a*b=b*a,c*a*c^-1=d*a*d=a^-1,e*a*e=a*b^2,b*c=c*b,b*d=d*b,b*e=e*b,d*c*d=e*c*e=a^2*b^2*c,e*d*e=b^2*d>;
// generators/relations